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Abstract: The world is full of clutter. In order to operate effectively in uncon-
trolled, real world spaces, robots must navigate safely by executing tasks around
obstacles while in proximity to hazards. Creating safe movement for robotic manip-
ulators remains a long-standing challenge in robotics, particularly in environments
with partial observability. In partially observed settings, classical techniques of-
ten fail. Learned end-to-end motion policies can infer correct solutions in these
settings, but are as-yet unable to produce reliably safe movement when close to
obstacles. In this work, we introduce Avoid Everything, a novel end-to-end sys-
tem for generating collision-free motion toward a target, even targets close to
obstacles. Avoid Everything consists of two parts: 1) Motion Policy Transformer
(MπFormer), a transformer architecture for end-to-end joint space control from
point clouds, trained on over 1,000,000 expert trajectories and 2) a fine-tuning
procedure we call Refining on Optimized Policy Experts (ROPE), which uses op-
timization to provide demonstrations of safe behavior in challenging states. With
these techniques, we are able to successfully solve over 63% of reaching problems
that caused the previous state of the art method to fail, resulting in an overall
success rate of over 91% in challenging manipulation settings. Videos and our
open source implementation are available at https://avoid-everything.github.io.

Keywords: Imitation Learning, Robotics, Collision Avoidance, Fine Tuning, Mo-
tion Planning

Figure 1: Avoid Everything is able to generate collision-free trajectories around complex obstacles
in real time, using input from a single depth camera. It is pretrained on a large collection of expert
demonstrations in simulated environments and fine-tuned with a technique we call ROPE, which
actively seeks out collisions, corrects them via optimization, and uses the output as a training example
for the network.

1 Introduction

The world is full of clutter. Humans effortlessly navigate through complex, unfamiliar spaces while
constantly avoiding hazardous collisions. Robotics has not solved this key challenge, which is critical
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to real-world success of robotic actors [1]. For robotic arms, this problem is especially pronounced
due to their complex kinematics (see Fig. 1).

Many leading planning methods for collision avoidance rely on a stable, accurate, and fully observed
representation of the robot’s workspace. This allows planner [2, 3, 4, 5, 6, 7] invalidate or avoid
invalid regions of the state space. However, building an accurate world model, particularly in cluttered
spaces, is an open problem [8]. End-to-end imitation learning is an popular alternative technique that
learns behavior without explicitly modeling the world, instead relying on patterns in how the expert
behaves in response to the environment. However, these methods face the challenge of learning to
avoid collisions from collision-free demonstrations alone. To address this, traditional motion planners
can be used to track the paths produced by the network [9, 10] or directly incorporate a predefined
world model into the learning framework [11]. These systems have the same limitations as traditional
ones. When the world model is inaccurate, the system may collide. While expert demonstrations
can be made collision-free, learning collision avoidant behavior necessitates a deep understanding
of the interplay between the scene geometry and the robot’s kinematics. Successful approaches have
employed large datasets [12, 13] or explicit losses to encourage obstacle avoidance [13]. However,
these techniques still fail in complex problems, leading to constrained capabilities [13] or continued
reliance on traditional collision checking techniques [14, 11].

To address these challenges, we present Avoid Everything, an end-to-end [15] system that uses point
clouds to generate goal-directed, collision-free motion for a robotic manipulator in cluttered 3D
scenes. Avoid Everything uses a new network architecture Motion Policy Transformer (MπFormer)
that is trained end-to-end using expert supervision from a motion planner. Our model predicts single-
step changes in joint configuration using point cloud observations, the robot’s current configuration,
and a target end effector pose. We also introduce a fine-tuning approach inspired by hard negative
mining [16, 17]: Refining on Optimized Policy Experts (ROPE). ROPE is critical to reducing the
collision rate in reaching toward the target. Through experiments, we show that Avoid Everything
is able to safely solve over 63% of problems where the previous state of the art method [13] fails,
resulting in an overall success rate of over 91% in challenging, partially observed manipulation
settings. We also demonstrate that ROPE can be used as a general tool to reduce collisions, even in
conjunction with DAgger [18], a standard technique for improving imitation performance.

Our contributions are as follows:

• Motion Policy Transformer, a new model architecture designed for predicting goal-directed
robot motion from a point cloud and target location.

• Refining on Optimized Policy Experts, a novel fine-tuning algorithm for learning collision
avoidance in robot motion generation.

• We demonstrate empirically that Avoid Everything reduces the collision rate of the previous
state of the art by over 77% and improves success rate by 63%.

• We show that our method transfers well from simulated training to highly cluttered, real-world
settings.

2 Related Work

Reactive Control and Motion Planning Robot motion generation has traditionally been studied
in the context of motion planning with a vast literature of methods [19, 20] based on graph search [4,
21, 22], sampling-based motion planning [2, 23, 24, 25, 26, 27], and trajectory optimization [28, 29,
30, 31]. See Appendix A for a more detailed discussion. While modern motion planning frameworks
can achieve low control latency [32, 6, 33], they assume complete knowledge of the environment
and make strong assumptions about obstacle representations for fast collision checking. Perception-
driven reactive control of robots also has a rich history. Operational Space Control (OSC) methods
such as [34, 35, 36] can enable robots to perform highly dynamic tasks at high control frequencies.
However, their myopic nature can lead to local minima in the presence of obstacles. In a similar
spirit to our work, Model-Predictive Control (MPC) approaches [37, 38] try to balance reactivity
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Figure 2: The input to MπFormer is a labeled point cloud, consisting of 4,096 points from the depth
image (with robot removed), 2,048 points sampled from the robot mesh at the current configuration
and 128 points from the gripper mesh placed at the desired target. The point cloud is encoded with
3 Set Aggregation [39] layers. The resulting features, along with an encoding of the current joint
state and a learned query token, are passed through 8 transformer layers. Finally, the output token
that corresponds to the query token is decoded into a delta joint configuration.

and planning horizon; however, real-time requirements often warrant the use of simple obstacle
representations and short horizons that can still lead to local minima.

Point Cloud Processing Point clouds, unordered sets of 3D points, are a lightweight and convenient
3D representation. Unlike other 3D representations such as meshes or Signed Distance Functions
(SDFs), it is much easier and faster to obtain 3D point clouds from sensors such as depth cameras.
As a result, many recent works choose to infer semantics and affordance from point clouds directly,
skipping the need for 3D reconstruction. Leveraging powerful neural backbones that process point
sets [39, 40], existing networks can segment objects [39], plan grasps [41] and check collisions [42]
from partial point clouds only. Following the same spirit, in this work we show how to reliably
generate collision-free joint trajectories from raw 3D point clouds.

Imitation Learning Imitation learning describes a broad class of techniques to learn a policy
from demonstrations, often made by a privileged expert [43]. Among imitation learning techniques,
behavior cloning [44, 45] describes a set of techniques where a policy is directly trained to mimic an
expert’s actions. In manipulation, these actions are often phrased as end effector waypoints [9, 46,
10, 47], but these methods require a separate planner and collision checker to perform tasks safely.
Recently [48, 49] have demonstrated strong capabilities for using transformers [50] to solve complex
manipulation tasks with images as input and joint controls as output. Inspired by these methods, our
architecture produces joint space controls given point cloud input.

Even when well-trained, learned policies typically exhibit small errors in prediction. As the error
accumulates, the policy will encounter unseen regions of the state space, a problem often called
covariate shift. Many techniques address this problem by strategically introducing a wider variety of
states into the training dataset to increase coverage [51, 52, 18]. DAgger [18] augment the training
data by providing expert demonstrations from states visited by a pretrained policy. Hard Negative
Mining [16, 17] is a related technique in computer vision that augments the training data by labeling
the explicit failures from a pretrained model. Our technique draws inspiration from both DAgger and
Hard Negative Mining to explicitly correct the difficult states found from a pretrained model.

Learned Motion Planning For the task of motion planning, imitation learning can be used either
end-to-end or as a component of a traditional system. Some methods use learning to guide a traditional
planner, either through a learned sampler [53, 54, 55, 56] or a learned heuristic function [57, 58].
Other techniques [38, 12] rely on a learned collision model [59]. Motion Planning Networks [14]
uses a point cloud neural network to generate waypoints that are then verified with a traditional
collision checker. Saha et al. [11] uses a diffusion model to produce plans based on the the SDF
representation of the environment. Our neural architecture is most similar to Motion Policy Networks
(MπNets) [13], which expects a segmented, calibrated point cloud and produces joint space controls.
Despite its strong performance on a variety of problems, MπNets is trained with an expert that
is smooth but incapable of reaching close to obstacles. As we discuss in Section 5.1.2, when the
MπNets architecture is trained and evaluated on more challenging problems (using a more expressive
expert), the policy often collides.
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3 Methodology

In the following section, we describe our policy architecture, training implementation, and ROPE,
our fine-tuning strategy that introduces hard negatives and explicit corrections.

3.1 Behavior Cloning for Collision Avoidance

Avoid Everything is a single-step policy that takes in a point cloud of the scene Pt, a 6-DoF target end
effector pose p, and the robot’s joint configuration qt, where t represents the current timestep. The
scene point cloud Pt consists of points sampled from the robot’s arm at joint configuration qt, points
sampled from the surface of the obstacles, and points sampled from a mesh of the robot’s end effector
placed at the target pose p, as shown in Fig. 2. During training, the points are sampled entirely from
the scene and robot meshes, and during inference, we use a depth image of the scene, mask out
points associated with the robot, and insert artificial points for the robot and target sampled from
the robot’s meshes. This point cloud representation of joint state qt and target pose p has superior
performance over a numerical representation [13] due to the PointNet’s [60] ability to understand
point-wise relationships in local 3D space. The output of Avoid Everything at timestep t is a delta
joint configuration ∆qt, which is added to the current joint state qt to form a position target for the
robot to follow.

3.1.1 Architecture

MπFormer is a transformer architecture [50] that expects inputs consisting of a segmented, calibrated
point cloud and the robot’s current joint state. The point cloud consists of points representing the
robot, the obstacles to avoid, and the robot’s gripper placed at the target 6D pose. Each point is given
a segmentation label representing which among these three types it belongs to. The points are first
encoded through a PointNet++ [39], which compresses the initial point cloud into a sparse set of
points with a wide feature vector. These sparse points are then flatted into a sequence to which we
append an embedding of the robot’s current joint state, as well as a constant token, the value of which
is optimized during training. This sequence is then passed into an encoder-only transformer (see
Figure 2). After 8 layers of self attention, we use the output token corresponding to the constant input
and decode it through an MLP to produce the final output joint displacement, ∆q. See Appendix B
for a more thorough discussion of the architecture.

3.1.2 Loss Functions

We train Avoid Everything according to the same loss functions as MπNets [13]: a task-space
behavior cloning loss to encourage the policy to mimic the expert’s behavior in task space, as well
as a collision-avoidance loss. These losses are applied on predicted joint states, which are computed
by adding the model’s output (joint angle deltas) to the input joint angles and clamping the sum at
the joint limits. See Appendix D for more detail on the losses.

3.2 Expert-Guided Fine-Tuning

After pretraining on a large dataset of expert state-action pairs, we observe that the policy is highly
capable of reaching the target pose. Despite the reaching success, however, it still collides with
objects in a significant percentage of problems in the held-out validation set (see Section 5.1.1).
When we roll out the pretrained policy in simulation, we observe that the first obstacle penetrations
are typically shallow and can be pulled out of collision by optimizing the configuration with respect
to the collision loss (See Appendix Equation 2). Based on this observation, we introduce a novel
technique of refining the pretrained policy for improved collision avoidance using fine tuning, inspired
by Hard Negative Mining [17, 16] and trajectory optimization methods [28, 61, 31]. During the
refining stage, we take mini-batches of random states from our training data—the same data used for
pretraining—and roll out the pretrained policy for a fixed horizon. These trajectories can reach the
target, collide, or neither. If the trajectory collides, we capture the state preceding the collision as
input and optimize the colliding state to use as supervision. We then store this state-action pair in
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Table 1: Avoid Everything vs. MπNets

Planner Cubby Tabletop
SR (%) / SCR (%) / RSR (%) SR (%) / SCR (%) / RSR (%)

Avoid Everything 95.71 / 0.50 / 99.30 91.97 / 1.03 / 98.44
MπFormer w. ROPE 92.78 / 2.37 / 98.41 89.57 / 4.15 / 96.82
MπFormer 89.92 / 6.43 / 99.52 86.00 / 11.26 / 99.57

MπNets w. ROPE 87.35 / 4.72 / 96.68 88.75 / 3.30 / 95.60
MπNets 79.65 / 15.16 / 99.09 77.95 / 14.72 / 95.69

a buffer. If the trajectory does not collide, whether by successfully reaching the target or hitting the
maximum rollout length, we use a separate buffer and store the input and output from the training
batch, unmodified. In order to perform a weight update on the policy, we use a modified mini-batch
made up of a fixed proportion r of corrected examples and 1−r of unmodified expert examples. Once
there are sufficiently many examples in both buffers, we remove these examples, assemble them into
a modified mini-batch, and perform a weight update according to the losses used during pretraining.
We then repeat this process with the updated policy. As discussed in Section J, increasing r leads to
lower collision rate but poor target convergence. We call this approach Refining on Optimized Policy
Experts (ROPE), and provide pseudocode in Algorithm 1 in Appendix E.

4 Data Generation Pipeline

Figure 3: Avoid Everything is trained separately in two
classes of procedurally generated environments, 2x2 cub-
bies. The first class is a 2x2 cubby with random dimensions
and positions. The second is a table of varying dimensions
a random set of objects placed on top. We generate expert
demonstrations with AIT* [7] and spline-based shortcut-
ting [62].

We trained Avoid Everything on a
large dataset of expert demonstra-
tions in procedurally generated en-
vironments, examples of which are
shown in Figure 3. The environments
themselves were generated randomly
and lie within two categories: 2x2
cubbies with randomized dimensions,
cubby sizes, and world placement;
and tabletops with a collection of ran-
domly placed obstacles. All envi-
ronments are constructed from primi-
tives, which allows us to quickly sam-
ple point clouds during training. Af-
ter generating each environment, we
choose random problems in each en-
vironment and solve them with AIT* [7] with a 15 second timeout, followed by a spline-based
shortcutting procedure [62]. For more detail on the planning pipeline, see Appendix C.

We trained Avoid Everything separately on each class of environments. For the cubby model, we
used 1.25 million problems across 21,604 environments. For the tabletop model, we used 2 million
problems across 43,646 environments.

5 Experiments

In order to evaluate Avoid Everything’s performance, we used a mix of quantitative experiments in
simulation and qualitative tests on physical hardware. Our simulated experiments are in environments
drawn from the same distribution as our training data. However, there are no shared environments
between the evaluation and training problem sets.

5.1 Simulated Experiments

For the following experiments, we use two different evaluation settings. The first is a set of fully
observed scenes where we sampled point clouds directly from the mesh. For these experiments, we
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Table 2: Planner Performance in Partially Observed Scenes

Planner Perception Cubby Tabletop
SR (%) / SCR (%) / RSR (%) SR (%) / SCR (%) / RSR (%)

Avoid Everything End-to-end 92.34 / 3.10 / 98.68 87.62 / 4.28 / 97.70
MπNets End-to-end 80.80 / 13.79 / 99.04 74.08 / 18.17 / 94.66
RRTConnect Octomap 51.12 / 48.34 / 99.46 53.34 / 48.60 / 99.56
AIT* Octomap 54.42 / 45.09 / 99.10 51.90 / 47.86 / 99.54
CHOMP Octomap 49.38 / 36.67 / 77.98 75.72 / 19.22 / 93.74
cuRobo NvBlox 73.06 / 22.88 / 94.74 76.86 / 22.11 / 98.68

used 10,000 problems for each environment type. As discussed in Section 4, our models are trained
on fully-observed point clouds to allow for fast, on-the-fly data generation. We use these experiments
to evaluate model features and fine tuning techniques.

We evaluate Avoid Everything against other planning techniques using partially observed point clouds
generated with synthetic depth images. While our model was trained in fully-observed settings, our
aim is for it to work robustly in partially observed environments. For these evaluations, we used 5,000
problems in each of our cubby and tabletop environments (10,000 total). For each environment, we
captured a synthetic depth image from a randomly positioned camera facing the scene. While Fishman
et al. [13] also evaluated Motion Policy Networks in partially observed settings, the viewpoint was
fixed per class of environment. In order to evaluate the robustness to partial observability, we used
random viewpoints for our synthetic images. See Appendix C for details.

Metrics We show the results of these experiments in Tables 1, 2 and 3. Each table reports three
metrics in each environment class. Reaching Success Rate (RSR) is the percentage of problems
for which each method could provide a path (collision-free or not) to within 1cm and 15◦ of the
goal. Scene Collision Rate (SCR) is the percentage of these paths that had a collision with the
scene, which we determined using discrete collision checking on the dense paths produced by each
method. Success Rate (SR) is the percentage of problems that had a collision-free solution to the goal,
including self-collisions. In addition to these top-line metrics, we also consider computation time,
which determines the reactivity of each method. See Appendix G for a discussion of computation
time.

5.1.1 Motion Policy Transformer

Without fine-tuning, MπFormer succeeds in 89.92% and 86.00% of our cubby and tabletop problems.
However, after using DAgger and ROPE—the version we label Avoid Everything in Table 1—we see
it succeed in 95.71% and 91.97% in the cubby and tabletop settings respectively. As discussed in
Section 5.1.4, DAgger and ROPE improve performance independently, and the combination of the
two leads to best-in-class performance.

In partially observed settings, we find that Avoid Everything still demonstrates strong performance,
albeit with a slight performance drop. This robustness to perspective changes and incompleteness is
a well-documented property of PointNet [60]. We expect that performance on partially-observable
point clouds would improve if this data were included during training, but doing so at this scale
would require significant additional computational resources.

5.1.2 Motion Policy Networks

Our system design is most similar to MπNets, which is the state of the art for learned end-to-end
collision free motion. In order to evaluate our method, we trained MπNets on our expert data and
compared it to MπFormer without any fine-tuning. We also fine tuned both models using ROPE
and compared the performance. These results are shown in Table 1. Without any fine-tuning, we
found MπFormer to outperform MπNets in both environments. Additionally, we find that ROPE
significantly improves the performance of both models, reducing collision rates by more than half.
However, after running ROPE on both algorithms, we find that the reaching success rate degrades
more for MπNets through the fine-tuning process. MπFormer is better able to adapt to the hard

6



Table 3: MπFormer with Different Fine Tuning Strategies

F.T. Stage 1 F.T. Stage 2 Cubby Tabletop
SR (%) / SCR (%) / RSR (%) SR (%) / SCR (%) / RSR (%)

None 89.92 / 6.43 / 99.52 86.00 / 11.26 / 99.57
ROPE 92.78 / 2.37 / 98.41 89.57 / 4.15 / 96.82
DAgger 93.19 / 4.08 / 99.54 89.17 / 5.59 / 99.31
DAgger ROPE 94.63 / 1.10 / 99.59 91.10 / 2.45 / 98.41
Cons. DAgger 94.88 / 1.28 / 99.16 91.06 / 2.31 / 98.74
Cons. DAgger ROPE 95.71 / 0.50 / 99.30 91.97 / 1.03 / 98.44

negative examples without losing the ability to reach the target. We also compare the performance
of Avoid Everything to MπNets in partially observed settings (Table 2) and observe that Avoid
Everything’s collision rate is less than 1

4 of MπNets’s collision rate in these settings.

5.1.3 Classical Methods

While classical motion planners are highly capable of finding collision-free solutions, some even
providing probabilistic guarantees [63], this hinges on the ability to verify states with a good
perceptual model. Often, the scene is not fully observable, so these planners must rely on partial
3D reconstruction. While there are many ways to reconstruct a scene from a partial view, planning
libraries still commonly recommend using analytic methods for 3D reconstruction. When using
these analytic techniques, we found that planners often report a collision free path when, in fact, the
path collides through an obstructed part of the scene. To understand this, we used four common
planning implementations: RRTConnect [64], AIT* [7], and CHOMP [28] from MoveIt! [65]
and trajectory optimization from cuRobo [6] along with their typical 3D reconstruction pipelines,
OctoMap [66] for the MoveIt! planners and NvBlox [67] respectively. See Appendix H for details on
our implementations. Note that these reconstructions used the partially observed point cloud—we
attempted to use a state-of-the-art pretrained point cloud completion network [68] in conjunction with
OctoMap, but found the completions to be inadequate for planning (see Appendix I). Our partially
observed evaluations use randomly sampled camera viewpoints and in these settings, we found that
all four planners tend to collide, despite the fact that they are highly effective at finding paths they
believe are feasible. Notably, RRTConnect and AIT* collide most frequently (over 48% and 45%,
respectively), likely due the random sampling, whereas the trajectory optimization methods collide
less—CHOMP collides in over 19% of scenes and cuRobo collides in over 22%—likely due to the
optimization objectives encouraging to stay away from visible obstacles. Meanwhile, for the same
problems, Avoid Everything collides in less than 5% of problems.

5.1.4 Fine Tuning Performance

After pretraining MπFormer, we evaluated several techniques for fine tuning the model. The results
of these experiments are shown in Table 3. See Appendix for more detail on each method.

ROPE When using ROPE, we found that it’s important to balance corrected states (henceforth
referred to as ROPE examples) with expert demonstrations, i.e. from pretraining, within the batches.
When fine-tuned on ROPE examples alone, we found collision rates dropped to zero, but reaching
error increases to over 8cm. The results shown in Table 3 use a ratio of 20% ROPE examples in each
update batch, which dropped collision rates by approximately half without significantly increasing
reaching error. However, for downstream tasks where precise reaching is less important, the ROPE
ratio could be increased to improve safety. See Appendix J for more discussion.

DAgger DAgger [18] is a highly effective technique to address covariate shift in imitation learning.
After pretraining the policy and rolling it out, DAgger queries the expert for instructions from each
achieved state. Although DAgger is useful to improve policy performance, it is can be computationally
infeasible with an expensive expert. Whereas DAgger queries for a demonstration at every state,
ROPE only corrects the difficult states. And, instead of using the original expert, ROPE relies only
on local optimization, which is comparatively fast. We evaluated two versions of DAgger–one that
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uses the same, pretraining expert and one that uses a more conservative expert, i.e. one that always
stays at least 2cm from obstacles, which we label Cons. DAgger. The conservative expert cannot
solve every problem and we simply remove any unsolvable problems from the fine-tuning dataset.
Despite this, we find that the conservative version of DAgger is a more effective fine-tuning strategy.
We attribute this behavior to the fact that the pretrained network has always learned the necessary
kinematic behavior to reach targets in close proximity and the conservative expert then demonstrates
that, outside of these cases, the policy should veer away from obstacles. After using either version
of DAgger, we find that using ROPE further reduces collisions and improves success, demonstrating
that these two methods correct for different types of failures. We discuss these findings, along with
our DAgger implementation, in greater detail in Appendix J.

5.2 Performance on Real Robot Hardware

We deployed Avoid Everything on a Franka Emika Panda robot using point clouds from a calibrated
depth camera. Key results are summarized here, with additional details in Appendix K.

We observed that the model is excellent at avoiding obstacles on the table when those obstacles are at
least partially observable by the camera. We commonly saw collisions into obstacles that were fully
occluded or out of the camera’s field of view. We expect this issue could be improved with additional
cameras to obtain a more complete point cloud. Many of the obstacles placed in front of the robot
were far outside the training distribution, yet the model was able to avoid them easily. However, we
found that highly complex obstacles, particularly those with thin structures (e.g. an office chair on
its side) can result in collision. Not only was this obstacle out of distribution, but the rear legs were
unobserved by the camera, leading to a compounding of our two main challenges.

We also observed signs that the model generalizes outside of its training data to produce safe behavior
within highly novel settings. When we placed the target inside an obstacle, the model tends to hover
above the obstacle without attempting to go in. This is despite the fact that none of the targets in
training were ever inside obstacles. However, while this behavior occurred in the majority of cases,
the robot did sometimes try to push through an obstacle to reach a target. We noticed this most often
when the top face of the obstacle that unobservable by the depth camera, leading the model to think
the object was an open bin instead of a closed box.

6 Limitations

Avoid Everything can achieve low collision rates in complex environments, but challenges remain. A
key issue is generalization—while it performs well on in-distribution tasks, it struggles with unseen
obstacle configurations and target poses outside the training distribution. The simple, gradient-based
optimization used for fine-tuning may also be insufficient in highly complex settings, requiring more
advanced techniques. Like other black-box systems, Avoid Everything lacks guarantees; in fully
observed scenarios, future work could combine Avoid Everything with traditional planners to ensure
safety. Finally, training requires substantial data and compute, which is costly and environmentally
harmful.

7 Conclusion

Avoid Everything is an end-to-end system that can create safe, collision-free motion toward a goal
using only a partially observed point cloud. The system consists of two novel components, MπFormer
and ROPE. MπFormer is an end-to-end transformer architecture that produces joint space controls
toward a target. With no fine-tuning, MπFormer is more capable than the existing state of the art
for end-to-end motion generation. ROPE is a fine-tuning technique that leverages optimization to
correct states where the pretrained policy collides. When used for fine-tuning, ROPE improves policy
performance of both MπNets and MπFormer. Avoid Everything, the combination of MπFormer and
ROPE, far outperforms other methods at generating end-to-end collision-free motion. See our website
https://avoid-everything.github.io for videos of our policy and our open source implementation.
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Appendix

A Related Work

Analytic Motion Planning Complex, high degree of freedom robots, such as manipulators, are
often not well suited to a predefined graph, and instead benefit from continuously sampling the space
to form a graph and a corresponding path through it [64, 23, 7]. Trajectory optimization [32, 69,
70, 28] is another approach well-suited to manipulation, that instead uses cost functions to refine
an initial path. This often leads to trajectories that are qualitatively preferable to those of sample-
based planners, but these algorithms are often subject to local minima. Whereas sampling-based
planners reject states in collision, trajectory optimization ensures safety through constraints. Some
techniques leverage hard constraints [69, 32, 71], while others approximate hard constraints with
highly-weighted penalties on undesirable behavior [6, 28, 72].

Safety Given the inherent risks of robot operation, safety has been an important component of
robot planning for many years. Classical approaches to safety, such as reachability analysis [73] can
provide powerful guarantees. While these methods have been successfully used in applications such
as aircraft landing [74], refueling [75] and vehicle planning [76], they are challenging to apply in
robotic settings with a large state space for computational reasons.

Given this difficulty, many researchers have turned to learning systems which generate signed
distance functions [77], radiance fields [78] or implicit surfaces [79] which can be used as safety
representations for motion planning and control [80, 81, 82, 83]. Our approach skips the potentially
costly reconstruction of these representations and instead learns to predict actions directly from point
cloud observations in an end-to-end fashion.

B Architecture

MπFormer uses PointNet++ [39] to encode the point cloud and a transformer [50] to fuse the point
cloud features with a representation of the current joint state. The input point cloud has a feature
vector of length 4 for every point. All obstacles are assigned the same feature, all target points are
assigned the same feature, and each robot point, which are sampled deterministically from the robot’s
mesh, is assigned a unique feature to disambiguate points on the arm. Our PointNet++ encoding
architecture consists of three Set Aggregation (SA) layers. SA layers are a sparse 3D analog to
convolutional layers. Each layer receives a point cloud where each point has a feature and outputs a
smaller point cloud by using furthest point sampling to select 1

4 of the points. Then, each sampled
point is used as the center of a ball query. The ball query samples up to 64 points inside the ball and
concatenates the ball center’s coordinates to each point’s feature vector. A four-layer MLP is then
run on each point and MaxPool [84] collects the points inside the ball to produce a single feature
per ball. The layers’ ball queries have radii of 5, 30, and 50 centimeters respectively. Our input
point cloud always has 6,272 points–4,096 obstacle points, 2,048 robot points, 128 target points.
The downsampled point cloud after the third set aggregation layer has 98 points. Finally, we add 3D
positional encoding to each of these 98 points, similar to [41].

The transformer takes a sequence of tokens as input, consisting of the 98 output features of the
third SA layer, a token for the current joint configuration, and a learned constant token, similar to
the decoder tokens in [48]. We get the joint angle token by passing the joint angles, which are
normalized to be between -1 and 1, through a single linear layer. Our transformer has 8 layers with
an embedding dimension of 512 and a feed-forward dimension of 2,048. To produce the final output
∆q, we take the last token of the output sequence and map it through a single linear layer.

C Data

Out environments are similar to those demonstrated in MπNets, but they differ in two key ways:
we augmented the cubby design to encourage reasonable expert behavior by adding a floor beneath
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the robot, and we increased the complexity of the tabletop environment by adding more objects
and increasing the range of reachable poses. Within these constructed environments, we randomly
sample end effector poses and their corresponding inverse kinematics (IK) solutions, which we
compute using IKFast [85]. For the cubby environments, the poses are all grasping positions inside a
cubby. For the tabletop, the poses are grasps pointing toward the lower hemisphere and placed either
near the table’s surface or on top of the objects. We also add neutral configurations drawn from
uniform distribution around the robot’s default pose to the tabletop data. These poses, for both types
of environments, must be at least 5mm away from obstacles. We then use AIT* [7] with a path-length
objective combined with a spline-based shortcutting [62] to generate expert demonstrations. In our
planning pipeline, we impose a 20 second time limit in which we sample uniformly from the robot’s
configuration space, marking any sample that is either in self-collision or within 5mm of an obstacle
as invalid. During the smoothing stage, we fit a collision and dynamics-aware spline to the planned
path while shortcutting. We then sample from the spline at a fixed timestep, leading to paths with
similar velocities, but varying lengths.

We chose this sampling-based pipeline because it enables us to produce expert demonstrations that
lie precariously close to obstacles. Previously, MπNets [13] demonstrated strong performance when
trained with a so-called Hybrid Expert, which uses a reactive controller [86] to follow a planned
end effector path. While this expert is effective for learning, it is highly conservative, preferring to
stay far away from obstacles. In their experiments, the authors demonstrated that the hybrid expert
demonstrations are insufficient to learn to solve problems that lie very close to obstacles. With our
sampling expert, we chose a 5mm buffer from obstacles because this is sufficiently close for most
tasks. As we designed our expert, we observed that increasing the collision margin improves learned
collision avoidance, but this limits the expert’s ability (and thus, the policy’s ability) to plan to targets
near obstacles.

When generating partially observed point clouds during inference, we captured depth information
from randomized camera positions placed in the scene. In these scenes, we placed the robot at a fixed
neutral starting configuration and segmented the robot out of the image. To randomize the camera,
it was first placed in the scene at a predefined location facing the robot and obstacles, and was then
rotated randomly by up to 30° about the z-axis (rotating side to side), then again by up to 10° about
the camera’s local x-axis (tilting up and down). Both of these rotations were applied using a fixed
pivot point directly in front of the camera. Finally, the camera was translated randomly along the
global z axis and y axes by up to 25cm.

To generate our expert dataset, we used a single desktop with a AMD Ryzen Threadripper 3990X
64-Core Processor. Generating the cubby and tabletop data took four and six days respectively.

D Loss Functions

Task Space Loss The aim of this loss is to compare the physical positions of the policy’s predicted
robot joint space configuration and the expert’s joint space configuration. For both configurations,
we use forward kinematic functions ϕ{i}(·) to map joint angles of the robot q to 1,024 points x{i}

on the robot’s surface, represented in 3D coordinates.

LBC(∆̂q) =

1,024∑
i=0

∥x̂i − xi∥2 + ∥x̂i − xi∥1 (1)

Like MπNets, we sum L1 and L2 distances in the loss because the sum penalizes both large and
small errors. We use a task space loss following MπNets, which demonstrated it to be more effective
when reasoning about collision avoidance as small perturbations along the kinematic chain can lead
to large deviations for the end effector.

Collision Avoidance Loss The training data was generated in simulation, giving us access to
privileged information unavailable during inference, including a signed-distance representation of
the scene. To avoid collisions, we use a hinge-based loss on D(x), the signed distance from a point
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x on the robot to the nearest surface in the scene. Inspired by motion optimization [28, 31, 87], this
loss effectively pushes the robot out of regions of collision. As in Equation 1, we use 1,024 points
x{i} on the robot’s surface to measure collision.

Lcollision =
∑
i

h(x̂i), where

h(x̂i) =

{
−D(x̂i), if D(x̂i) ≤ 0
0, if D(x̂i) > 0

(2)

E ROPE

Our expert-guided fine tuning algorithm Refining on Optimized Policy Experts (ROPE) refines a
pretrained model to reduce the collision rate using automated labeling of data generated by the
learning agent. This algorithm first rolls out a fixed length horizon sequence s′ using the current
model. To start a rollout, we randomly sample an expert trajectory from our training data and a state
along that trajectory. We then roll out the expert for up to 50 steps. If this rollout collides at any point,
we terminate the rollout and generate a fine tuning example by using the state preceding the collision
as input and optimizing the colliding state to use as output. This optimization uses the collision
avoidance loss in Equation 2 to push the state out of collision. We use AdamW to perform this
optimization for simplicity, although we expect other methods typical to motion optimization such
as Gauss-Newton or Levenberg-Marquardt may lead to a faster fine-tuning procedure. We continue
to roll out sequences until enough corrected data has been collected to form a batch, after which the
model is fine tuned using the task space and collision avoidance losses outlined in Appendix D. We
then repeat this process with the newly updated policy. Algorithm 1 provides pseudocode. During
fine-tuning, we continually use the latest policy to perform rollouts, even as it is updated. In our
best-performing fine-tuning experiment, we reached peak performance after 21 hours of training.

F Training Implementation

Avoid Everything was trained on an NVIDIA 4090 in batches of 50 using AdamW [61] with a
learning rate of 5e−5 and a linear warmup of 5000 steps from 1e−5. On the cubby environment,
the model was trained for 1.2 million steps, which took approximately four days.

During training, we add small amounts of random noise to the input configurations, which [52]
showed leads to improved robustness. Like MπNets, the training scenes are constructed from
primitives, so point clouds can be generated on the fly during training by sampling points from the
surfaces of these primitives. Robot points are sampled deterministically from the mesh of the robot.
When Avoid Everything runs on the real robot, we mask out the robot points in the depth cloud and
re-insert them using the same deterministically sampled points from training.

G Computation Time and Reactivity

Despite its high success rate, Avoid Everything is less suitable than MπNets for high-frequency
control. Running on a NVIDIA 4090 GPU, we can run Avoid Everything at 33Hz, meanwhile
MπNets runs at 150Hz. While this discrepancy could be improved with a more optimized transformer
implementation, the Avoid Everything architecture requires a relatively expensive pass through self-
attention, whereas MπNets uses average pooling to aggregate PointNet features from the point cloud
encoder, which is much less computationally expensive.

When compared to traditional planning pipelines under partial observation, Avoid Everything shows
both significantly improved collision rates as well as much higher reactivity. For Avoid Everything,
the computation cost for every action is the same, whether or not the scene changes. Meanwhile,
traditional planners have to recompute a path when the world changes. When the scene is static,
traditional pipelines only need to run once because they produce a full path with each call. Even
in these cases, we found Avoid Everything to produce a full path faster than the MoveIt! planners.
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Algorithm 1: Refining on Optimized Policy Experts
Result: π

1 π ← πpretrained
2 b← Batch Size
3 r ← Correction Ratio
4 Dexpert ▷ Dataset containing expert demos

5 Bcoll ← {} ▷ Collision correction demos
6 Bfree ← {} ▷ Collision-free expert demos
7 for {state, next_state, tgt, scene} in Dexpert do
8 s← state
9 for j ← 1 to N do

10 s′ ← π(s, tgt)
▷ If s′ collides, correct & add to buffer

11 if collides(s′, scene) then
12 s̄′ ← correct(s′, scene) ▷ Apx Eqn 2

13 add(Bcoll, {s, s̄′, tgt, scene})
14 break
15 end

▷ If rollout finishes without collision, add original example to buffer
16 if reached(s′, tgt) or j = N then
17 add(Bfree, {state, next_state, tgt, scene})
18 break
19 end
20 s← s′

21 end
22 if |Bcoll| > rb and |Bfree| > (1− r)b then

▷ Make batch & clear buffers
23 B ← {pop(Bcoll, rb), pop(Bfree, (1− r)b)} ▷ Compute loss, gradient update
24 π ← update(π,B)
25 end

▷ Reached validation accuracy or timeout
26 if termination_condition(π) then
27 terminate
28 end
29 end

Curobo, however, was the fastest option in these scenarios, and was able to produce an entire path
nearly as quickly as Avoid Everything produced a single action (See Figure 4).

H Partial Observability for Analytic Planners

Figure 5 show examples of the perceptual pipelines we used for MoveIt! [65] planners (RRTCon-
nect [64], AIT*[7], and CHOMP [28]) and cuRobo [6]. MoveIt! is a popular motion planning library
that integrates natively with Octomap [66] for perception. We used an Octomap with a resolution of
5mm. Our implementation of RRTConnect [64] used with a 5s timeout. When using CHOMP [?
], we use the same RRTConnect parameters to find the seed trajectory. For AIT* [7], we specify a
time out of 20 seconds and a configuration space path length objective, but we terminate the search
as soon as a feasible trajectory. Note that this is different than the AIT* implementation we use for
generating training data, where we use a full scene model and continue to refine the trajectory for 20
seconds.

In the cubby settings, we found that RRTConnect found a solution in 99.46% of the problems and
we attribute the remaining to noise that could be addressed with a longer timeout. However, of these
successful plans, over 48% of them had collisions. We found that AIT* had slightly lower collision
rates, 45.09% and 47.86% in the cubby and tabletop settings respectively, which we expect has to
do with the adaptive heuristic used for search. Overall, the performance of both methods was very
similar, but despite their similar performance in these baselines, we expect that AIT* could be tuned
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Figure 4: This figure depicts the end-to-end computation time needed to run Avoid Everything,
along with the baseline methods, to solve partially observed problems in the cubby setting. Both
Avoid Everything and MπNets [13] provide low-latency inference in dynamic settings, whereas the
model-based methods each require an expensive call to a perception pipeline that increases latency.
While MπNets is fastest, Avoid Everything is much faster than our other baseline methods when used
for reactive control. In static scenes where an open-loop rollout is appropriate, cuRobo (together
with NvBlox) is the fastest option.

to outperform RRTConnect through improved cost function design and by giving it more time to
optimize its objective.

We ran similar tests using two different trajectory optimization methods designed to produce smooth
trajectories, CHOMP [? ] combined with Octomap [66] as well as cuRobo [6] combined with
NvBlox [67]. CHOMP finds a path in 77.98% of cubby trajectories, but 36.67 of these trajectories
have collisions. CHOMP performs better in the tabletop setting, likely because it has fewer bug
traps that are often challenging for local optimization techniques. Meanwhile, cuRobo finds a path
in 94.74% of of cubby problems, but 22.88% of these trajectories have collisions. We set the nvBlox
resolution to 1cm for this test after consulting with the authors of cuRobo [6].

An advantage of classical methods such as those in our baselines is that they did not require special
tuning or training for either environment. While we expect that their performance could be improved
with additional tuning, the default parameters exhibit similar performance in both settings. Despite
Avoid Everything having stronger performance in both environments, we do not expect it to generalize
to wholly new settings as classical methods can.

I Point Cloud Completion with Classical Pipeline

When capturing point clouds with a depth camera, obstructions in the scene create holes in the
point cloud. As discussed in section 5.1.3, classical methods often produce a valid path through
the observed point cloud but collide with the scene in the unobserved regions. This problem is
particularly pronounced in our RRTConnect [64] baseline because the planner searches for any
valid feasible path by sampling in free space. Since the unobserved regions are registered as free
space, the planner is just as likely to plan through these regions as any other free space in the
scene. Instead of using OctoMap to directly represent the points captured from the camera, we could
instead use a point cloud completion network, such as the state-of-the-art method AdaPoinTr [68],
to estimate the completed shape of the point cloud before constructing the OctoMap and using it
for planning. However these techniques are subject to their training distribution and are typically
trained on specialized datasets such as ShapeNet [88] and do not generalize. We attempted to use
this strategy as a baseline, but found that when pretrained with the Projected ShapeNet-55 dataset,
the AdaPoinTr model cannot accurately complete our scenes (see Figure 6), leading to low success
rates for the planner. This was particularly pronounced in the cubby setting, where the RRTConnect
planner’s reaching success rate (RSR) was 8.84% and among these solutions, the scene collision
rate (SCR) was 80.09%. This is a significant degredation from using OctoMap without completion
where RSR is 99.52% and SCR is 67.16%. The low planning success rate after completion is
largely due to the fact that the completed point clouds obscured either the starting configuration or
target pose, making it impossible to find a valid plan. Point cloud completion performed better in
the tabletop settings, where the RSR is 74.14% and SCR is 41.03%. However, these metrics are
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Figure 5: A typical failure case for classical planners is that they do not account for collisions in
unobserved regions. In this example, the reconstructions from both Octomap [66] and NvBlox [67]
leave large holes due to occlusion. Avoid Everything is able to leverage learned priors to produce
safe movement without an explicit reconstruction.

still significantly lower than OctoMap without completion, where RSR was 99.62% and SCR was
53.30%. Given the performance demonstrated in the original AdaPoinTr publication [68], we suspect
that this performance could be significantly improved by retraining the model on a selection of our
scenes, but due to resource constraints, we leave this investigation to future work.

J Maintaining Reaching Performance After Fine Tuning

ROPE We aimed to determine the efficacy of ROPE by varying the ratio of hard negative examples
in each fine-tuning batch. We set this parameter r as a constant value for the entire fine-tuning
procedure and studied how different values change the performance (see Figure 7). For these
experiments, we looked only at the cubby setting and used fully observed point clouds, similar to
those used during training. We observed a monotonic decrease in collision rate as r increased.
However, we also observed a monotonic increase in the reaching error, i.e. the minimum distance
from the target after rolling out for 70 time steps. With no fine-tuning, we measured an average
reaching error of 0.58cm and a collision rate of 6.43%. At r = 20%, we observe an average
reaching error of 0.64cm with a collision rate of 2.37%. At r = 50%, collision rate is below 1%,
but reaching error averages 1.41cm. We chose r = 20% for our other experiments, but the choice of
this parameter should be determined by the downstream application and the criticality of collision
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Figure 6: Learned Point cloud completion is a common technique to address unobserved regions
of a point cloud. However, when we used the pretrained state-of-the-art point cloud completion
network AdaPoinTr [68], we found that it produced highly inaccurate results for our scenes, likely
due to distribution shift. In the cubby scene (top), the point cloud completion adds volume to the
front of the cubby, making it hard to plan. In the tabletop scene (bottom), the completion misses a
large portion of the scene and fails to capture the geometry of the objects.

avoidance. We did not experiment with varying r during fine-tuning as a function of performance,
but we hypothesize that setting it as a function of performance would improve results.

DAgger One of the most common techniques for fine-tuning a learned policy is DAgger[18].
DAgger aids in accounting for distribution shift by asking the expert to provide demonstrations at
every state the pretrained policy would visit. Likewise, ROPE can be seen as a way to account for
distribution shift by correcting the policy when it fails. While DAgger is a generally useful tool
for imitation learning, it requires making many costly calls to the expert. In our case, each expert
demonstration requires 20 seconds of computation time, which adds up quickly if a demonstration is
needed at every state visited by the policy. We implemented two versions of DAgger as comparisons
and show the performance in Table 3. In the first version, we ran the pretrained Avoid Everything
through its entire training data, collected the trajectories with collisions, and requested an expert
demonstration at every step leading up the collision. We found that this technique can improve
performance, reducing the pretrained collision rate of 6.43% in cubby setting to 4.08%, but it is
not better than ROPE, which reduces the collision rate to 2.37%. We attribute this to the fact
that the DAgger corrections use the same expert, which often veers very close (5mm) to obstacles.
To verify this, we tested a second version of DAgger that uses a more conservative expert for
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Figure 7: Fine-tuning can be run with different proportions r of hard negative examples. As r
increases, the collision rate goes down and target error increases. We attribute this phenomenon to
the model overfitting to the hard negatives and forgetting the original behavior cloning objective.

corrections–one with a 2cm collision buffer. We label this more conservative technique Cons.
DAgger in Table 3. As discussed in Section 4, this expert is more limited in the problems it can
solve, e.g. not those that either start or end within 2cm of obstacles. However, we found that this
version of DAgger significantly improves collision avoidance without negatively impacting reaching
performance, dropping collision rate in the cubby setting to 1.28%. We observe a similar drop in the
tabletop setting, bringing pretrained collision rate from 11.26% to 2.31%. Running DAgger, however,
is very computationally intensive—collecting DAgger demonstrations for the policy’s failures on our
training dataset required nearly five days on a desktop with an NVIDIA 3090 GPU and an AMD
Ryzen Threadripper 3990X 64-Core Processor.

When used alone, ROPE outperformed DAgger with the original 5mm expert in both the cubby and
tabletop settings. Meanwhile, fine-tuning with Cons. Dagger outperforms both. However, we did
not find ROPE to be to be mutually exclusive of DAgger. With both versions of DAgger, we were able
to further improve performance by using ROPE as a second fine-tuning step. The best performance
came from stacking the conservative DAgger technique with ROPE, with success rates of 95.71%
and 91.97% in the cubby and tabletop settings respectively.

K Real Robot Experiments

We used a dual-computer setup running ROS to control our Franka Emika Panda robot. The control
computer, which runs a real-time linux kernel, has Intel(R) Core(TM) i7-4770 CPU with 16 Gigabytes
of RAM. The second computer, which runs Avoid Everything, has an Intel(R) Core(TM) i9-9900K
CPU, 32 Gigabytes of RAM, and an NVIDIA Titan RTX GPU. We use a Kinect V2 for perception,
which captures point clouds at approximately 10Hz. We use [89] for eye-on-hand calibration and
[90] to remove the robot from the depth cloud; we then re-insert these robot points into the cloud
using the deterministic sampling method described in Section F. We are able to run the model at
approximately 25Hz on our hardware, which allows for reactive motion. We send each predicted
action directly to a lower level joint controller [91].

The model is able to react to moving obstacles in the scene, but due to speed of our camera, it can
take up to 140ms—100ms for the camera update, 40ms for the model update—for the robot to react
to an obstacle. We expect that this reactivity could be improved with a faster camera, a faster GPU,
or both. We used our best performing checkpoint, which was first fine-tuned with the conservative
DAgger pipeline and then fine-tuned with ROPE (see Section 5.1.4).
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Figure 8: As the distribution of environments expands beyond the training distribution, Avoid
Everything;s performance degrades. We evaluated this by evaluating Avoid Everything on equally
sizes evaluation sets with increasingly wide distributions of parameter values. On the far left is
performance on a test set drawn from the same distribution used to generate the training data and on
the far right is a test set where all parameters are drawn randomly from a range twice as wide as the
corresponding range used to generate the training data.

One challenge in our setup is that the gripper of the Franka is nearly symmetric about the axis
that points from the wrist to the midpoint of the fingers. Our training data consisted of randomly
generated poses, but these poses typically sampled from only half of the rotations about this axis.
When we provided an out-of-distribution pose where the 180◦ rotation about this axis would be in
distribution, we observed the robot typically tries to exploit the symmetry of the gripper and reach
the symmetric in-distribution pose. Depending on the application, these 180◦ rotations may or may
not be acceptable. We believe this could be fixed by increasing the variation of target poses in the
training set, adding a unique per-point embedding to the gripper points to distinguish orientations,
or both.

L Generalization

Despite Avoid Everything’s strong performance on in-distribution environments, we found that the
performance does degrade in environments that lie outside of the training distribution. To understand
the rate of decay, we generated ten additional sets of 10,000 environments and planning problems
with increasing randomness. As described in Section 4, our environments are generated according
to procedural rules using randomly sampled parameter values. For each parameter, we scaled the
range from which it could be drawn. As these scaled values go up, the sampled environments are
more-and-more out of distribution. We found that while performance does decay, the network is still
able to safely solve many out-of-distribution problems (see Figure 8). In environments that are much
further out of distribution, however, we observed that our system does not generalize. To test this, we
evaluated the model trained on tabletop environments on our test set of tabletop environments and
found the model to success in only 8.61% of problems. We hypothesize that co-training on many
classes of environments as in [13] would lead to stronger generalization, but due to our computational
constraints, we leave this to future work.
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